A new hybrid structure of speech recognizer based on HMM and neural network

نویسندگان

  • Jian-Lai Zhou
  • Xiaodong He
  • Tiecheng Yu
  • Fuyuan Mo
چکیده

In this paper, we introduced a new framework of speech recognizer based on HMM and neural net. Unlike the traditional hybrid system, the neural net was used as a post processor, which classify the speech data segmented by HMM recognizer. The purpose of this method is to improve the top-choice accuracy of HMM based speech recognition system in our lab. Major issues such as how to use the segmentation information of HMM in neural net, the structure of the neural net, the choice of the error metric for training neural net, and the determination of the training procedure are investigated within a set of experiments. In these experiments, we attempt to recognize 68 phoneme like units in continuous speech. Our results indicate that this is a potential method. About 20% can be obtained to improve the recognition accuracy for multi-speaker system in syllable level, and 10% for speaker independent system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

Improved Hidden Markov Model Speech Recognition Using Radial Basis Function Networks

A high performance speaker-independent isolated-word hybrid speech recognizer was developed which combines Hidden Markov Models (HMMs) and Radial Basis Function (RBF) neural networks. In recognition experiments using a speaker-independent E-set database, the hybrid recognizer had an error rate of 11.5% compared to 15.7% for the robust unimodal Gaussian HMM recognizer upon which the hybrid syste...

متن کامل

Improved Hidden Markov Models Speech Recognition Using Radial Basis Function Networks

A high performance speaker-independent isolated-word hybrid speech recognizer was developed which combines Hidden Markov Models (HMMs) and Radial Basis Function (RBF) neural networks. In recognition experiments using a speaker-independent E-set database, the hybrid recognizer had an error rate of 11.5% compared to 15.7% for the robust unimodal Gaussian HMM recognizer upon which the hybrid syste...

متن کامل

Hybrid model decomposition of speech and noise in a radial basis function neural model framework

This paper focus on a new approach to automatic speech recognition in noisy environments where the noise has either stationary or non-stationary statistical characteristics. The aim is to perform automatic recognition of speech in the precence of additive car noise. The technique applied is based on a combination of the Hidden Markov Model (HMM) decomposition method [ 11, for speech recognition...

متن کامل

Advanced training methods and new network topologies for hybrid MMI-connectionist/HMM speech recognition systems

This paper deals with the construction and optimization of a hybrid speech recognition system that consists of a combination of a neural vector quantizer (VQ) and discrete HMMs. In our investigations an integration of VQ based classi cation in the continuous classi er framework is given and some constraints are derived that must hold for the pdfs in the discrete pattern classi er context. Furth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999